If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+10+x^2-98=180
We move all terms to the left:
x^2+10+x^2-98-(180)=0
We add all the numbers together, and all the variables
2x^2-268=0
a = 2; b = 0; c = -268;
Δ = b2-4ac
Δ = 02-4·2·(-268)
Δ = 2144
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{2144}=\sqrt{16*134}=\sqrt{16}*\sqrt{134}=4\sqrt{134}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{134}}{2*2}=\frac{0-4\sqrt{134}}{4} =-\frac{4\sqrt{134}}{4} =-\sqrt{134} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{134}}{2*2}=\frac{0+4\sqrt{134}}{4} =\frac{4\sqrt{134}}{4} =\sqrt{134} $
| 14x-28x^2=0 | | 154=7(1-3p) | | x-8/6=-4 | | Y=y/3y+6 | | -16x^2+16x=-200 | | .75b+5=20-b | | K2+5k+6=(k+2)(k+) | | 2x-20+40+x-20=180 | | x/7-7=-8 | | 6m-11=9m+1 | | 6-x+3(x-3)=6x+8-4x-11 | | 6+7x=71/6 | | -6(t-3)-(t+5)=3 | | 4/5c-4=4 | | 4+z=-9 | | (9/10)=(10/x) | | 0.2x-0.7x-13=3 | | 9d+7=88 | | 22p-8=13p+2(p+31) | | 3q+(15q+18)=180 | | 22p-8=13p+2(p+31 | | 9+x+4x=101/9 | | 9d+7=82 | | f+(-61)=-2 | | 6a-2(a+3)=54+a | | 6x-3+2x=-3 | | 4m+13=73 | | 3x+4x-7=33-x | | X=y/3y+6 | | 2x−(-10)=14 | | 50=4y+14 | | 2(5t-6)=23t+8 |